

LMS78 0.5R Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Switching Regulator

- ← Efficiency up to 93%
- Operating temperature range: -40°C ~ +85°C
- Pin-out compatible with LM78XX linears
- Short circuit protection (SCP)
- Thermal shutdown
- Low ripple and noise
- F Sip package, meet UL94-V0
- Low temperature rise
- 1 Industry standard pinout
- Ultra low no-load power consumption

The LMS78 0.5R series high efficiency switching regulators are ideally suited to replace LM78xx linear regulators and are pin compatible.

Common specifications	
Short circuit protection:	Continuous, automatic recovery
No-load input current:	0.2mA TYP, 1.5mA MAX
Reverse Polarity Input:	Forbidden
Input Filter:	Capacitor Filter
Temperature rise at full load:	25°C MAX, 15°C TYP
Cooling:	Free air convection
Operation temperature range:	-40°C~+85°C Power derating above 71°C
Storage temperature range:	-55°C ~+125°C
Pin welding resistance temperature:	260°C MAX, 1.5mm from case for 10 sec
Operating case temperature:	100°C
Storage humidity range:	< 95%RH
Package material:	Plastic [UL94-V0]
MTBF:	>2,000,000 hours +25°C MIL-HDBK-217F
Weight:	2g

- 1. The max. capacitive load should be tested within the input voltage range and under full load conditions;
- 2. Without any special statement, all indexes are only specific to positive output application;
- 3. Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75% when inputting nominal voltage and outputting rated load;
- 4. All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact with our technician for specific information;
- 6. Specifications subject to change without prior notice.

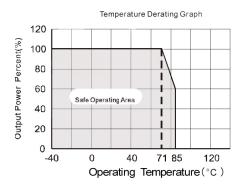
Output specifications					
Item	Test conditions	Min	Тур	Max	Units
Output voltage accuracy	100% load		±2	±3	%
Line regulation	Input Voltage Range		±0.2	±0.4	%
Load regulation	10% to 100% load		±0.4	±0.6	%
Output current limit				3000	mA
Ripple + Noise*	20MHz Bandwidth Vin=24VDC 0% -100% load		20	75	mVp- p
Over heat protection	Internal IC junction			170	°C
Short circuit input power			0.5	1.8	W
Switching frequency		550		850	KHz
Transient response deviation	Nominal input, 25% load step change		55	250	mV
Transient recovery time	Nominal input, 25% load step change		0.5	2	ms
Temperature coef- ficient	-40 °C to +85 °C ambient			0.03	%/°C

^{*} Test ripple and noise by "parallel cable" method. With the load lower than 10%, maximum ripple and noise will be 150mVp-p.

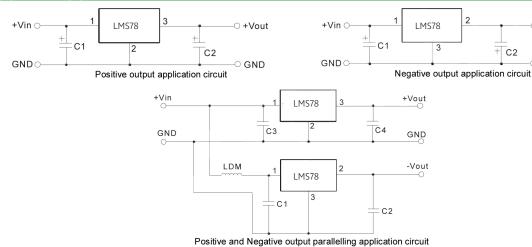
Model selection:

LMS78_yy-pp

LM=Series; S=case; ##=Vout; pp=output current


LMS78 05-0.5R

LM= Series; S= SIP Case; ##= 5Vout; pp=0.5A; R= Revised


EMC sp	ecifications			
EMI	CE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, ②or EMC module application circuit)
EMI	RE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, ②or EMC module application circuit)
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±2KV	perf. Criteria B (External circuit refer to EMC recommended circuit, ①)
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A
EMS	Voltage dips, short and interruptions immunity	IEC/EN61000-4-29	0%-70%	perf. Criteria B

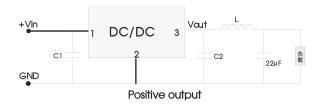
Part Number	Input Voltage [VDC]	Output Voltage	Output Current	Efficiency	Max. capacitive load
	Nominal (Range)	[VDC]	[mA]	[%, min/typ]	[μF]
LMS78_03-0.5R	24 (4.75-36)	3.3	500	78/81	680
LMS78_05-0.5R	24 (6.5-36)	5	500	82/85	680
	12 (7-31)	-5	-300	78/81	330
LMS78_09-0.5R	24 (12-36)	9	500	87/90	680
LMS78_12-0.5R	24 (15-36)	12	500	89/92	680
	12 (8-24)	-12	-150	82/85	330
LMS78_15-0.5R	24 (19-36)	15	500	90/93	680
	12 (8-21)	-15	-150	82/85	330

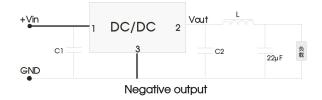
Typical characteristics

Typical application circuit

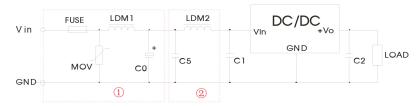
Part number	C1,C3 (Ceramic Capacitor)	C2,C4 (Ceramic Capacitor)
LMS78_03-0.5R	10μF/50V	22μF/10V
LMS78_05-0.5R	10μF/50V	22μF/10V
LMS78_09-0.5R	10μF/50V	22μF/16V
LMS78_12-0.5R	10μF/50V	22μF/25V
LMS78_15-0.5R	10μF/50V	22μF/25V

Note:

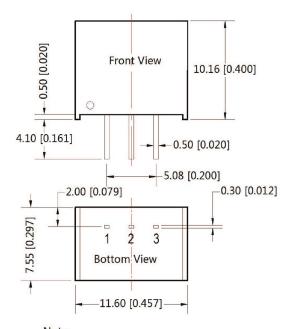

1. C1 and C2 are required and should be connected close to the pin terminal of the module.


· GND

- The capacitance of C1 and C2 refer to Sheet 1, it can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- 3. When the products used as the circuit like figure 3, an inductor named as LDM up to $10\mu H$ is recommended in the circuit to reduce the mutual interference.
- 4. Cannot be used in parallel for output and hot swap.
- 5. Operation under no load will not damage these devices, however they may not meet all specifications. In order to ensure the converter can work reliably with high efficiency, please parallel a resistor on the output side (The sum of the efficient power and resistor consumption power is not less than 10%).

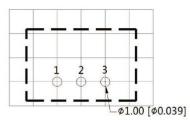

Typical application circuit

To reduce the output ripple furtherly, it is suggested to connect a "LC" filter at the output terminal, and recommended value of L is $10\mu H-47\mu H$.


EMC solution-recommended circuit

Part \bigcirc in the Fig. 5 is for EMS test, part 2 is for EMI filtering; parts and can be added based on actual requirement.

FUSE	MOV	LDM1	CO	C1/C2	C5	LDM2
Selected based on the actual input current from the customer	S10K35	82µН	680μF /50V	Refer to table above	4.7μF /50V	12µН


Mechanical dimension and footprint

Note: Unit:mm[inch]

Pin section tolerances:±0.10[±0.004] General tolerances:±0.25[±0.010]

Note: Grid 2.54*2.54mm

	Pin-Out				
Pin	Positive Output	Negative Output			
1	Vin	Vin			
2	GND	-Vo			
3	+Vo	GND			